IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 1

1

Revisiting Adversarial Attacks on Graph Neural

Networks for Graph Classification

Xin Wang, Member, IEEE, Heng Chang, Beini Xie, Tian Bian, Shiji Zhou, Daixin Wang, Zhigiang Zhang,

and Wenwu Zhu, Fellow, IEEE

Abstract—Graph neural networks (GNNs) have achieved tremendous success in the task of graph classification and its diverse
downstream real-world applications. Despite the huge success in learning graph representations, current GNN models have
demonstrated their vulnerability to potentially existent adversarial examples on graph-structured data. Existing approaches are either
limited to structure attacks or restricted to local information, urging for the design of a more general attack framework on graph
classification, which faces significant challenges due to the complexity of generating local-node-level adversarial examples using the
global-graph-level information. To address this "global-to-local” attack challenge, we present a novel and general framework CAMA to
generate adversarial examples via manipulating graph structure and node features. Specifically, we make use of Graph Class Activation
Mapping and its variant to produce node-level importance corresponding to the graph classification task. Then through a heuristic design
of algorithms, we can perform both feature and structure attacks under unnoticeable perturbation budgets with the help of both node-level
and subgraph-level importance. Experiments towards attacking four state-of-the-art graph classification models on six real-world
benchmarks verify the flexibility and effectiveness of our framework.

Index Terms—Adversarial Attack, Deep Graph Learning, Graph Neural Networks, Graph Classification.

*

INTRODUCTION

RAPH structured data is ubiquitous for capturing re-

lations and interactions at the level of node classifi-
cation [1], edge prediction [2], and graph classification [3].
Among them, graph classification plays a vital role in a wide
range of domains [4].

For instance, in social network analysis, the fake news
detection problem can be regarded as a binary graph classi-
fication task over Twitter’s news propagation networks [5].
As a powerful tool with the expressive capability of deep
learning on graph data, the family of Graph Neural Networks
(GNNs) has gained tremendous popularity over the past few
years in graph classification and its downstream real-world
applications [6]-[11].

Despite the powerful ability of GNNs in learning graph
representations, their vulnerability to potentially existent
adversarial examples on graph-structured data has been

This work was supported by the National Key Research and Development
Program of China No. 2020AAA0107800, National Natural Science Foun-
dation of China (No. 62222209, 62250008, 62102222), Beijing National
Research Center for Information Science and Technology under Grant No.
BNR2023RC01003, BNR2023TD03006, and Beijing Key Lab of Networked
Multimedia. (Corresponding authors: Xin Wang and Wenwu Zhu.)

o Xin Wang and Wenwu Zhu are with the Department of Computer Science
and Technology, BNRist, Tsinghua University, Beijing 100084, China
(e-mail: xin_wang@tsinghua.edu.cn; wwzhu@tsinghua.edu.cn).

o Heng Chang, Beini Xie and Shiji Zhou are with the Tsinghua-Berkeley
Shenzhen Institute, Tsinghua University, Shenzhen 518055, China (e-
mail: changhl7@mails.tsinghua.edu.cn; xbn20@mails.tsinghua.edu.cn;
zsj17@mails.tsinghua.edu.cn).

e Tian Bian is with the System Engineering and System Management
Department, Chinese University of Hong Kong, Hong Kong 999077,
China (e-mail: tianbian@link.cuhk.edu.hk).

e Daixin Wang and Zhigiang Zhang are with the Ant Group,
Hangzhou 310063, China (e-mail: daixin.wdx@antgroup.com;
lingyao.zzq@antgroup.com).

o Digital Object Identifier 10.1109/TKDE.2023.3313059

Clean Graph: label=0 Perturbed Graph: label=0

x

Adversarial

Attack x

¥ ¥

- S

Predicted as: 0 Predicted as: 1

Fig. 1: Adversarial attack on graph classification. Given a
cleaned graph, we can manipulate node features and edges
to generate a poisoned graph to fool the victim GNN.

revealed recently [12]. Therefore, the lack of robustness
within GNNs may be exploited by fraudsters or spam-
mers, potentially provoking dissent on their applications
in security-critical domains. For example, deliberately mod-
ifying personal identity information without authorization
will result in credit card fraud [13]. Similar to the utilization
of graph-structured data, adversarial attacks on graphs can
also be broadly categorized into node level and graph level,
in terms of the type of different tasks. On the one hand,
studies towards node-level adversarial attacks are quite
comprehensive from various perspectives [14]-[18]. On the
other hand, in contrast to the remarkable and relatively
mature frameworks for adversarial attacks on node-level
tasks, systematic research regarding a general attacking
framework for adversarial attacks on graph classification
tasks is largely unexplored regardless of the vast importance.

Compared with perturbations for node-level classifica-
tion, migrating these adversarial examples to graph-level

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

-

N,
\

s X Localize .y -
i ,_.m_.! e
\ 1 T een

~ /

N ————

clean graph
with label [l

"))
\ _— _l potential perturbation area

-

feature attack

~&tle

perturbed graph
classified as label [l

straightforward perturbation

-
0‘ .0

o X

y N

. S

E
‘ewwwas ‘S

subgraph mask learning

Fig. 2: An example of CAMA for a three-classes graph classification task. In the CAMA framework, we first localize
potential perturbations to top-ranked important nodes. Then, we generate corresponding perturbed graphs until obtaining a

successful feature/structure attack.

tasks is a non-trivial problem, since they have different goals
for optimization from the local to global scale. We denote
this problem as the “global-to-local attack challenge” which
is illustrated in detail in Section 4.1. The desired attack frame-
work for graph classification should be general to conduct
both feature and structure attacks. Moreover, the effective
attack on one graph classification model is expected to be
able to be successfully transferred to other graph classifiers
(an illustration is shown in Figure 1). Most importantly,
a successful attacker is expected to perform unnoticeable
attacks and effectively localize important nodes/edges to
perturb via the global-level classification information. In
a nutshell, the research on graph classification adversarial
attacks still faces three main challenges:

o Given that graph classification tasks depend on effi-
ciently learning global graph representation from local
node embeddings via pooling functions, it is complex to
exploit information of global-graph-level classification
to generate local-node-level adversarial examples;

o Most existing approaches can only attack graph struc-
ture. However, node features might contain more fruitful
information. For example, personal identity information
and loan history apparently matter more in credit mod-
els and fraud detection. Therefore in a more realistic and
practical condition, we need a general attack framework
that is able to manipulate both node features and graph
structure;

o Current attack methods for graph classification using
gradient information only consider the training of target
models and fail to reflect the information from the
global graph structure, which might easily result in
the generated adversarial edges being trapped around
a single node or concentrating on high-degree nodes as
we observe from experiments.

To tackle these challenges, we propose a novel hierarchi-
cal framework, namely CAMA, to bridge the gap between
local-node-level and global-graph-level information. We
migrate the idea from Class Activation Mapping (CAM) [19]

to conduct powerful adversarial Attack towards graph
classification tasks. This unified solution sheds light on
the problem of quantifying the contribution of local node
information to global representation in attacking graph
classification tasks. An example of CAMA is shown in
Figure 2. To summarize, our work makes the following main
contributions,

o Framework: We propose the novel CAMA framework
for adversarial attacks on graph classification. Our attack
approach fills the gap in generating local perturbation
examples from global graph classification as well as
performs attacks unnoticeably. Given the simplicity and
effectiveness, CAMA can serve as a strong benchmark
for future works in this branch.

o Algorithm: We heuristically design novel algorithms to
select target nodes in a graph by graph class activation
mapping and its variant, then generate adversarial
examples in the level of both structure and feature.

o Experiment: We show that our method is able to deteri-
orate graph classification performance by a significant
margin on various benchmarks via targeting multiple
state-of-the-art GNNs. Further, except for white-box
attacks, we also test the transferability of our attack
method under the black-box setting for evasion attacks.

2 RELATED WORK

GNNs on graph classification. GNNs have proliferated in
recent years for tasks like node classification, link prediction,
graph classification, and graph generation. GNNs often
stack multiple graph convolutions followed by a readout
operation to aggregate nodes’ information to a graph-level
representation when dealing with graph classification tasks.

Various graph convolution layers and graph pooling
operations are proposed to learn both nodes and graph
representation better [20], [21]. One of the most popular
GNN:s is Graph Convolutional Networks (GCN) [1] which
is inspired by the first-order approximation of Chebyshev

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

polynomials in ChebNet. It updates the node representation
by taking an average representation of their one-hop neigh-
bors. GCN has excellent results in the semi-supervised node
classification tasks. Graph Isomorphism Network (GIN) [22]
uses sum aggregation and multi-layer perceptrons instead of
one single activation function. It has excellent discriminative
power equal to that of the WL test. Facing the finite nature
of recurrent GNNs, Implicit Graph Neural Network (IGNN)
[23] is able to capture long-range dependencies and performs
well in both graph classification and node classification
on heterogeneous networks. Its framework ensures well-
posedness based on Perron-Frobenius’s theory.

Except for novel graph convolution operations, diverse
pooling strategies affect graph tasks differently. Direct pool-
ing methods like simple node pooling (node-wise mean-
pooling, sum-pooling, and max-pooling) directly generate
graph-level representation based on node representations
[24]. In contrast, hierarchical graph pooling exploits the
hierarchical graph structure. DiffPool [25] proposes a differ-
entiable hierarchical clustering algorithm to learn representa-
tions of the new coarsened graph by training a soft cluster
assign matrix in each layer. Based on the graph Fourier
transform, EigenPooling [26] jointly uses node features and
local structure. The graph pooling layer (gPool) [27] conducts
down-sampling on graph data by selecting top-k nodes from
calculated projection value. Inversely, the graph unpooling
layer (gUnpool) does up-sampling to restore graphs to their
original structure. Inspired by U-Net in computer vision,
graph U-Nets (g-U-Nets) [27] is proposed using gPool and
gUnpooling operations. g-U-Nets can encode and decode
high-level features for network embedding.

In this paper, we use GCN, GIN, and IGNN as represen-

tatives of general graph classification neural networks and
use g-U-Nets to represent hierarchical graph classification
models.
Adversarial attacks on graph classification. GNNs have
shown their vulnerability under adversarial attacks [28].
Most recent works aim to attack models on node classification
tasks [16], [29]-[31]. Despite their fruitful progress, these
methods can only perform attacks on node-level tasks.

For graph-level tasks, based on reinforcement learn-
ing, RL-S2V [15] flips edges by selecting two endpoints
under black-box attack. ReWatt [32] proposes to perform
unnoticeable attacks via rewiring operation and utilizes
a similar reinforcement learning strategy as RL-S2V. Grab-
nel [33] exploits Bayesian optimization to conduct adversarial
attacks targeting graph classification models. Under the
white-box setting, GradArgmax [15] exploits gradients over
the adjacency matrix of classification loss and flips edges
with the largest absolute gradient. Projective ranking [34]
generates adversarial examples by ranking potential edge
perturbation masks through encoding node features and
projecting selected edge masks.

Nevertheless, the above methods cannot perturb node
features. Further, [35] proposes an attacking strategy on
hierarchical graph pooling neural networks. However, they
overlook the importance of direct pooling, like simple node
pooling. Thus, this approach loses its strength when the
graph classification model is unknown. A novel generic
attack framework GraphAttacker is recently proposed by [36],
which could attack multiple tasks. But the time complexity

3

serves as its main concern due to the process of training the
GAN-based model.

Considering all of these, adversarial attacks on graph

classification are not been fully explored by previous studies.
To mitigate this gap, our proposed general framework could
flexibly perform structure attacks and feature attacks. Aside
from the white-box attack, we also analyze the transferability
of our method under black-box attacks.
CAM on graphs. Class Activation Mapping (CAM) local-
izes image-level classification into pixel-level image areas
by using global average pooling (GAP) in convolutional
neural networks in computer vision when it was firstly
proposed [37]. CAM has a strong discriminative localization
ability in the explanation of image classification. For example,
it can localize the toothbrush region in a picture classified
as brushing teeth. Compared with the blossom of grand
application in computer vision, the utilization of CAM on
graph-structured data (Graph CAM) is quite rare with only
being applied to the explainability in GNNs [19], [38]. Given
a graph classification task, Graph CAM can localize the
most influential nodes for classification, which then helps us
better understand GNNSs. Grad Class Activation Mapping
on graphs (Graph Grad CAM) [19] extends CAM on graphs
by loosening architecture restrictions and using gradients of
hidden layers as projection weights. In this work, we first
integrate the localization ability of Graph CAM with the
awareness of adversarial attacks on the graph classification
tasks. We will undoubtedly increase the scope of research on
Graph CAM.

3 PRELIMINARIES
3.1

Given a set of graphs G = {G;}Y,, where |G| = N, we
consider graph classification on G. Each graph G; = (4,, X;)
has n; nodes, where A; € {0,1}"*" is the adjacency matrix
and X; € R"*P is the node feature matrix with dimension
D. Each G; is assigned with a label ¢; € C = {1,2,...,C},
where C' is the total number of classes.

Notations

3.2 Graph Classification

Graph classification aims to predict the labels of unlabeled
graphs. With paired graphs and labels {G, ¢; };—(1,... N}, its
goal is to learn a mapping function f : G — C. We simplify
graph classification model architecture and consider only
one fully connected layer. Given a graph G; = (A;, X;) with
n; nodes, a standard procedure for graph classification with
direct pooling can be formulated as:

hY = Xi, b = feono (R 0)), 1= 1,2, L

7

h; = pooling(hl@))7 z;=Wh; +b,

M
()

where hgl) € R"*Dt denotes the hidden node embedding in
the [-th graph convolution fe,y,, and ®!is the corresponding
parameter matrix. h; € RPZ is the graph embedding of
G; after pooling of final node embedding hEL) € RMixPr,
W € RE*PL and b € R are parameters in the output fully
connected layer, and L is the number of graph convolution.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

The objective function for graph classification can be
further formulated as:
N
mine Lo(G) =Y _I(fe(G:),c:),
i=1

where [(-, -) is a loss function such as the cross-entropy.

3.3 Adversarial Attacks towards GNNs

The problem of adversarial attacks on graph classification is
to misclassify graph labels, which is formulated as follows:

Problem 1. Given paired data of graphs and their labels
{Gy,¢; Y|, the goal of an attacker is to minimize the attack
objective function Lqy:

N
argming, Eatk(g/) = Z latk(f@(G;l)v ci),
i=1

where Loy, is the attack loss function, and G’ denotes the perturbed
version of G;.

We could define [, = —I where [is set as the cross-
entropy loss for graph classification. We can also define [,
as the other attack loss like the CW-loss [29].

In the real world, the attacker usually only unnoticeably
attacks within perturbation budget A for each graph G;.
Thus, the domain of modified graphs is constrained as :

A= A; [lo + || Xi = X o< A,

where A} and X/ is the perturbed adjacency matrix and
node feature matrix for graph G. In the following sections,
we omit the subscript i for graph G; for simplicity.

Adpversarial attacks have various taxonomies from the per-
spectives of perturbation type (feature attack and structure
attack), attacker’s knowledge (white-box attack and black-
box attack), and the stage where attacks happen (evasion
attack and poisoning attack). A desired general framework
should be able to deliberate most situations mentioned above,
which is also the aim of this work.

4 METHODOLOGY

In this section, we start by introducing the global-to-local
attack challenge. In order to tackle this challenge, we propose
to first localize potential perturbations to top-important
nodes and then perform attacks targeting these important
nodes. The whole attack process is decomposed into two
steps: 1) node importance estimation, and 2) adversarial example
generation. In this way, we are able to first transfer the focus
from classification on graphs to the contribution of each node
and design perturbations locally afterward.

4.1 Global-to-Local Attack Challenge

Generating adversarial examples toward graph classification
is intrinsically a global-to-local problem. The goal of attackers
is to fool the GNNs from correct predictions on graph-level
labels. However, the adversarial attacks must be localized
to node and edge levels. The global-to-local problem is non-
trivial to solve since graph-level predictions and node-level
attacks are implicitly bridged via the pooling functions in
GNNSs. As empirical evidence, we observe that existing

\/

Random Degree GradArgmax ReWatt

Fig. 3: An example of structure attack on MUTAG dataset
with edge attack proportion=20%. Added edges are shown
in red lines and deleted edges are shown in orange dashed
lines.

methods either give more attention to high-degree nodes
or easily get trapped around one single node, which makes
the adversarial examples noticeable and then undesirable.

TABLE 1: Average degree of the selected nodes in diverse
feature attack methods.

Dataset ~ Random Degree Betweenness RWCS — GC_RWCS
MUTAG 2.23 3.00 2.99 2.99 2.72
COX2 2.00 3.24 3.01 3.18 2.49

Table 1 shows the comparison of the average node degree
of nodes selected by different attack methods. Compared
with Random which selected nodes to attack randomly,
the other attack methods tend to select nodes with higher
degrees, which makes the attack process more noticeable.

In addition, we visualize selected important nodes and
generated structural perturbations from various baselines in
Figure 3. For example, for Degree, the perturbed edges are
selected based on node degree. This may result in irrelevant
perturbation between nodes and edges. Meanwhile, we can
observe that the adversarial edges produced by GradArgmax
and ReWatt are trapped near one single node, which further
implies the deficiency of these two methods that extract
merely local information.

As a result, this paper quantifies the contribution of nodes
at the local level to graph classification tasks at the global
level and reversely conducts effective adversarial attacks
at the local level to destroy the global level classification
performance. Our methods could better utilize the graph-
level classification information to localize to nodes/edges
not only important to the classification but also irrelevant to
several super influential nodes.

4.2 Node Importance Estimation

The node importance estimation helps to localize poten-
tial perturbations into high-important nodes in a graph.
Specifically, after finishing model training, we determine
the contribution of nodes from the local level to graph
classification in a way inspired by Graph CAM and its
variant [19].

Graph CAM. As a useful method that provides explainability
for graph classification, Graph CAM has been well studied.
Since the weight matrix of the output fully connected
layer can represent the importance of the features of each
dimension for graph classification, Graph CAM builds a
heat-map matrix by projecting back the weight matrix to the
node representation in the final graph convolution layer to
indicate the importance of each node for graph classification.
This heat-map matrix is calculated as:

Loy = ReLURPWT), (3)

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

where W € RE*DL is the same weight matrix as in Eq. equa-
tion 2, and h(%) € R"*Pt denotes node representation in
the final graph convolution layer for one graph as shown in
Eq. equation 1. The k-th element in c-th row of W indicates
the importance of feature k for predicting label c.

A variant of Graph CAM, Graph Grad CAM, uses gra-
dients with respect to each hidden convolutional layer and
each class. Then, the calculation of gradients a! € RP %0
replaces weights W7 in CAM to construct the heat-map
matrix for each layer. At last, by taking the average over
the heat-map matrix of all graph convolution layers, the
heat-map matrix is calculated as:

al:l2£7
n << on)

_ 1 O
Lerad-cam = 7 ;ReLU(h a’),
where z € R is the prediction logits, hi) € RP' is the
hidden embedding for node v in the I-th graph convolution
layer. The i-th entry in c-th column of L¢ 4, indicates the
relative importance for node ¢ resulting from classifying G;
into class c.

Though having great explainability, directly using Graph

CAM still has two limitations. Firstly, the number of fully
connected layers is fixed to one due to the restriction on
matrix multiplication in Graph CAM. Secondly, the hidden
size must be kept the same for all hidden convolutional
layers for Graph Grad CAM. As we will show in experiments,
these architecture restrictions do not deteriorate classification
performance on clean graphs. Also, they do not hinder the
transferability of our proposed attack methods.
Ranked CAM Matrix. We calculate the ranked CAM matrix
based on the CAM heat-map matrix. The whole process is
summarized in Algorithm 1. After getting the CAM heat-
map matrix, We first rank each column in descending order
and get the corresponding nodes ranking matrix U219, €
R"*“ in line 1. This implies the class-specific view of node
importance ranking. Then, we exploit U2/ 1%, to calculate
a global-level nodes ranking vector ugiopqr € R™ in line 2.
Specifically, we go through each row in U214, and use the
highest ranking among all columns for each node until all
nodes are included in wg;0pq;. Finally, we concatenate these
two ranking sources of nodes to get the final ranked CAM
matrix Uganm € RX(C+1),

Algorithm 1: Generating ranked CAM matrix.

Input: Heat-map matrix Lo an.
Output: Ranked CAM matrix Uc g -
1 UZLY, < column_rank(Lean);
2 Ugiobal < global_rank(Lcanr);
3 Ucam < concatenate([UZ 9, Wgiobal]);

4 Return Ug as;

Because the CAM heat-map matrix can precisely demon-
strate the importance of each node for graph classification
tasks, after the ranking operation on CAM heat-map, each
column in Ugap indicates one type of view for nodes’
importance ranking. We could identify the most influential
nodes for the whole graph classification process through
different views of the ranked CAM matrix and generate
adversarial examples accordingly. Since the adversarial attack

5

depends on Graph CAM, we name our framework as CAM
based Attack and its variant CAMA-Grad when using Graph
Grad CAM.

4.3 Adversarial Example Generation

With access to the ranked CAM matrix Ug 457, we call each
column of Ug 4 as the ranked CAM vector, denoted as
Uc =1,..,C +1 . How do we generate adversarial
examples with a series of ranked CAM vectors? Here,
we heuristically propose two attack algorithms towards
CAMA (for feature attack and structure attack) and CAMA-
subgraph (for structure attack only). For CAMA, in the overall
adversarial perturbation, we repeat using our algorithms for
each column of the ranked CAM matrix U® until a successful
attack. For CAMA-subgraph, we only need the column of
the predicted label in the ranked CAM matrix to select the
candidate perturbations. Both two algorithms have their
grad version CAMA-Grad and CAMA-subgraph-Grad. The
difference between algorithms and their grad version lies
only in calculating the CAM heat-map matrix.

4.3.1 Feature Attack

For feature perturbations, we set both global-level and
local-level perturbation budgets. In global-level budgets,
we assume only a few nodes of one particular graph are
available. These nodes are called target nodes. In local-level
budgets, we constrain the number of features to be adjusted.

Given the limitation of modified node amount 7, target
nodes are selected by the first r nodes in the ranked CAM
vector U°. A small constant noise ¢ is added to each feature
of target nodes for perturbation, while € relies on the
attacker’s knowledge of node features. Specifically, given the
information of the training process, the number of adjusted
features K and adjusted magnitude), noise €; added for the
j-th feature could be calculated following [31] as:

\ - sign (Z?:l %ﬁ%)) ’
}1:1,2,...,D)

€ = ifj € argtop-K <HZ:I:1 7&(?}5)’6)

0, otherwise.
We replace Carlili-Wagner loss in [31] with cross-entropy
loss. The overall number of perturbations is r/ < A. We
summarize the process of CAMA for generating feature
perturbations in Algorithm 2.

Algorithm 2: CAMA for feature perturbations.

Input: Graph G = (A, X) with n nodes; number of
nodes limit r; ranked nodes vector U¢; feature
noise €;, where j = 1,2,..., D.
Output: Modified feature matrix X.
1 Initialize modified feature matrix X’ < X;
Cnodes — UC[: T];
2 for u in C,pg4es dO
3 ‘ X;[U]HXJ'[U}+€J', j=12,...,D
4 return X'/;

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

4.3.2 Structure Attack

Structure attack is more comprehensive compared with
feature attack, considering the complexity of connectivity
in graphs. To this end, we specially design two structure
attack algorithms: CAMA and CAMA-subgraph, with the help
of the ranked CAM matrix. CAMA is an efficient algorithm
that performs attacks via simply flipping edges among top-
ranked vital nodes in the ranked CAM matrix. CAMA-
subgraph then takes a step further to attack by learning a
subgraph mask to select edges for perturbation.
CAMA: straightforwardly flipping edges among most
important nodes. To generate structure perturbations, we
assume edges among nodes of higher activation importance
are more influential in graph classification tasks and intu-
itively flip edges among them. With the known ranked nodes’
influence on graph classification, we flip edges among nodes
that have a higher ranking. Furthermore, we exploit node
similarity to enhance attack ability aside from the information
from the graph structure. The similarity score is calculated
as follows.

Given a learned embedding of node h*™?, similarity S
between nodes u and v is calculated with cosine distance:

S[ua U] = S[U, u] = COS(himb, hgmb).

We constrain the operation of adding/deleting edges within
the similarity constraint. Under the graph homophily as-
sumption and with the calculated similarity matrix S, we
choose to add edges between low-similarity node pairs and
delete edges between high-similarity node pairs:

A'lu,v] — Alu,v] =1, Afu,v] = 0 and S[u,v] < s1;
A'lu,v] — Alu,v] = =1, Afu,v] = 1 and S[u,v] > so.

Our attacking strategy is in heuristic way by increasing

the ranking number each time, iteratively finding candidate
pairs of nodes, and flipping edges between new target nodes
and old ones within perturbation budget and similarity
restriction. In each iteration, we increase ranking number
1 by one and add a new node u;, which ranked i-th in
vector U, into target nodes set Cy,oq4c5. In the end, we flip
edges between new target nodes and old ones within A. The
overall procedure for structure perturbations is summarized
in Algorithm 3.
CAMA-subgraph: attack with subgraph mask learning. In
order to further exploit the local information from a subgraph
perspective, we propose an end-to-end adversarial structure
attack model with subgraph mask learning.

For each graph G, we obtain a subgraph G.. by
keeping p% top ranked nodes Vsup, [Vsus| = [p%|V]] in
the nodes rank vector with view of predicted label c
(the c-th column U*€ in the ranked CAM matrix). Then,
we limit potential edge perturbations M = Vg, X Veup
within the subgraph. With the edge perturbation candidates
{Mun|t, v € Veubs 20 Muw < A}, the adversarial examples
are calculated as follows:

Cyv = 1- 2auv (4)
a/ — Ay + cu1la(muv)7 u € Vsub7 v E Vsub (5)
uv Ay, others,

Algorithm 3: CAMA for structure perturbations.

Input: Graph G = (A, X) with n nodes;
modification budget A; Similarity matrix S;
similarity restriction parameter s;, s2; ranked
nodes vector U°.

Output: Modified adjacency matrix A’.

1 Initialize remaining perturbation number
Nperturbs < A, modified adjacency matrix A’ < A,
target nodes set Cyo4es = U€[0], and current rank

index ¢ = 1.

2 while (i < n) and (nperturys > 0) do
3 | u; « U°[i);

4 for v in Crodes do

5 if similarity_constraint((u;, v); S, s1, s2) then
6 A'lu;,v] 1 — Aluy, v,
7 Nperturbs — Nperturbs — 1;
8 if nperiurps == 0 then

9 ‘ break;
10 C(nodes <~ [Cnodesvui];
11 14— 1+1;

12 Return A’;

where o(+) is the sigmoid function to map mask values into
zero and one. The larger value of m,,, the more attack
importance to perturb edge a,,.

Given a trained victim model fg, we minimize the attack
loss g for each graph with the victim model’s parameters
unchanged to learn the subgraph mask m,:

(6)

where [, denotes for CW-loss, and l.,,;: represents the mean
entropy of each element 172, I, aims to achieve a successful
attack [29] while [.,; encourages the masking value of
0(Mmyy) to be binary [39]. Hyper-parameter \.,; balances
the influence of [.,, and [.,,; in the total loss function.

Specifically, given the ground truth label c; of the graph,
the detailed designs of I, len: are:

minlye = lew + Aentlent,

lew = max(ze,, — I,I;ax zer,0), (7)
1
lent - - ﬁ Z (J(muv) loga(muv)
U, VEVsub (8)

+ (1 = o (myy)) log(1 — U(muv)))a

where the hyper-parameter 7 is the confidence size control-
ling how many entries in m,,, could be free of penalization.

Algorithm 4 shows the whole attacking process of struc-
ture attack with subgraph mask training, and we denote it as
CAMA-subgraph. First, we select top-ranked nodes in U* to
formulate a subgraph and limit the edge perturbation within
the subgraph in line 1. Secondly, for each training epoch,
we minimize the attack loss l44; to train the subgraph mask
M as shown in line 4. Then, we select the top-ranked mask
M A within the perturbation budget A in line 6. In lines 7-9,
we flip edges for nodes pair selected in M to generate the
adversarial example. Finally, we test the attack performance
of generated adversarial examples in lines 11-12.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

Algorithm 4: CAMA-subgraph for structure attack.

Input: Graph G = (A, X) with n nodes; the ground
truth label ¢4, of graph G; ranked nodes
vector of the predicted label U¢; subgraph
proportion p%; victim model fg; total training
epoch number T'; the perturbation budget A;

Output: Modified Adjacency matrix A’.

1 Initialize perturbation candidate subgraph
Vsub = {u|u € UC[: ngup)}, where ngup, = [p%|V|].
2 fortinl,2,...,T do
3 // Train subgraph mask
4 minpg latk = lew + Aentlent;
5 // Generate the adversarial example
6
7
8
9

select top A perturbations Ma ~ Bernoulli(M);
for (u,v) € {(u,v)|my, € Ma} do
a;w —1- Auvs
G+ (A", X);
10 // Test the adversarial example
u | if argmax, fo(G') # cg then
12 | break;
13 return A’;

4.4 Complexity Analysis

We analyze the complexity of the proposed framework by
using CAMA as an example. Given a graph with n nodes as
target, the main complexity lies in the preparation of inputs:

« The original nodes ranking matrix U9, (Algorithm 1):
The complexity of line 1is O(Cnlog(n)) = O(nlog(n)),
since the number of classes is always much less than
that of nodes. Then the complexity from line 2 to 6
is O(Cn). Thus the total complexity of Algorithm 1 is
O(nlog(n) + Cn);

o Feature noise ¢;, where j = 1,2, ..., Dr: The complexity
of getting all e is O(nDy, + nK) = O(nDy), since K is
seleted from Dy,;

o Similarity matrix S: The complexity of having similarity
matrix is O(n?Dy,).

Then we analyze the complexity of Algorithm 2 and
Algorithm 3 accordingly, note that all constraints have no
effects on the complexity since they can be checked in
constant time:

Feature attack (Algorithm 2). The complexity from line
3 to line 5 is O(r). Thus, the total complexity of Al-
gorithm 2 is combining it with U¢ and all ¢, which is
O(n x max(Dp,log(n))).

Structure attack (Algorithm 3). The complexity from line
2 to line 11 is O(min(n?, A)). Thus, combining with the
complexity of similarity matrix S, the total complexity
of Algorithm 3 is O(min(n?Dyr,A)) = O(A), since the
modification budget A is controlled to restrict the access
from attackers and strictly smaller than n?.

Through our analysis of the complexity above, we can
find that CAMA enjoys computational efficiency, especially
in comparison with the complexity of target GNNs.

5 EXPERIMENTS

In this section, we evaluate the effectiveness of our proposed
methods on the graph classification task under the white-
box and black-box settings. We further conduct sensitivity

7

analysis for hyper-parameters and provide the poisoning
black-box attack performance.

5.1 Experimental Setups

Datasets. We evaluate our attack strategies on five chemical
graph classification benchmarks: MUTAG, PROTEINS, NCI1,
COX2 [40], and three social network datasets: IMDB-BINARY,
IMDB-MULTI, DBLP_v1. Among chemical graphs, node fea-
tures consist of node attributes and node labels: in PROTEINS
and COX2, we use both node labels and attributes, while in
the others, we only use one-hot node labels as node features.
For social networks, node features are initialized with the
node degree. The dataset statistics can be found in Table 2.

TABLE 2: Dataset statistics.

Dataset #Graphs #Classes Avg. #Nodes Avg. #Edges
MUTAG 188 2 17.93 19.79
PROTEINS 1,113 2 39.06 72.82
NCI1 4,110 2 29.87 323
COx2 467 2 4122 43.45
IMDB-BINARY 1,000 2 19.77 96.53
IMDB-MULTI 1,500 3 13.00 65.94
DBLP_v1 19,456 2 10.48 19.65

Graph Classifiers. We use four state-of-the-art GNNs for
graph classification: GCN, GIN, IGNN, and g-U-Nets. Only
one fully connected layer is adopted for all configurations,
and no dropout layer is used after graph pooling. The
same global sum-pooling readout function is applied for
all models. For GCN, we use 5 GCN convolutional layers.
For GIN, we set ¢ = 0 (also called GIN-0) and use 5 GIN
convolution layers. For IGNN, we use 3 IGNN convolution
layers and tune hyper-parameter € {0.7,0.98}. We fix the
size of hidden dimensions as 64. g-U-Nets have a different
architecture due to their hierarchical nature. Here, we use
the node representation of the last layer before the readout
function to calculate the CAM heat-map matrix. We apply
four (graph pooling) gPool layers with 90%, 70%, 60%, and
50% node proportions and ignore the max-pooling layer
in its readout function since global max-pooling is poorer
at localization compared to GAP [37]. We implement these
GNN s with Pytorch Geometric (PyG)®.
Baselines. We compare our methods with representative
feature attack baselines which select perturbation nodes from
various perspectives (Random, Degree, Betweenness, RWCS,
etc.). For all baselines under feature attacks, the same feature
noises in Section 4.3.1 are added to selected nodes, the differ-
ence only lies in the nodes selected process. We also compare
CAMA with representative white-box (PGD, PR-BCD) and
black-box (ReWatt, Grabnel) structure attack methods. Every
baseline we compared either released source code or made it
available upon request. The detailed baselines are described
as follows.
o (structure/feature) Random [15]: Random randomly se-
lects nodes to perturb and edges to insert/delete.
o (structure/feature) Degree [41]: Degree chooses nodes
with top degrees and insert/delete edges among them.
o (structure) Grad Argmax [15]: GradArgmax greedily selects
perturbation edges by gradients of each pair of nodes,
which works only for structure attack.

1. https:/ / github.com/rustyls/pytorch_geometric

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

8

TABLE 3: Summary of the change in classification accuracy (in %) compared to the clean graph under white-box attack for

chemical datasets. Lower is better. Best performances are shown in bold markers.

Dataset MUTAG PROTEINS NCI1 COX2

Models GCN GIN-0 IGNN g-UNets GCN GIN-0 IGNN g-U-Nets GCN GIN-0 IGNN g-U-Nets GCN GIN-0 IGNN g-U-Nets
Clean 83.04 89.85 81.46 88.89 7817 77.81 77.99 77.54 78.98 77.59 75.06 7224 88.87 83.51 83.51 83.08

Feature Attack
Random[15] -5.35 -5.29 -7.43 -7.02 -1.26 -0.63 -4.04 -0.90 -16.06 -19.03 -33.92 -55.57 -17.32 -3.42 -7.05 -11.54
Degree[41] -4.82 -7.40 -7.43 -8.66 -1.61 -0.81 -4.58 -0.99 -17.27 -23.63 -37.40 -59.37 -22.67 -4.28 -8.54 -13.90
PageRank [31] -4.30 -3.18 -6.37 -6.99 -1.53 -0.72 -4.67 -0.99 -1896 -21.99 -37.83 -59.95 -25.48 -6.00 -10.28 -12.40
Betweenness [31] -5.88 -8.97 -6.90 -8.13 -1.44 -0.72 -4.49 -0.90 -15.70 -19.17 -34.87 -57.64 -17.10 -4.08 -7.70 -13.91
GC-RWCS [31] -6.43 -7.92 -6.90 -8.13 -1.53 -0.81 -4.13 -0.99 -16.64 2258 -33.72 -57.40 -20.10 -3.88 -7.91 -13.70
RWCS [31] -5.35 -7.92 -6.90 -7.57 -1.71 -0.63 -4.58 -0.99 -17.52 -2421 -3547 -58.74 -23.75 -5.99 -8.78 -13.06
CAMA -10.64 -9.53 -10.12 -11.78 224 -1.44 -6.56 -2.25 -33.58 -36.08 -56.74 -69.61 -52.68 -9.69 -27.83 -27.64
CAMA-Grad -11.70 -9.53 -10.12 -11.73 -2.60 -1.53 -6.29 -2.25 -31.70 -3557 -56.76 -69.90 -52.23 -1547 -22.89 -24.40
Structure Attack

Random [15] -4.82 -16.43 -5.26 -2.13 -0.99 -4.13 -1.53 -0.54 -9.49 -10.97 -6.37 -4.31 -6.43 -3.84 -2.14 -4.93
Degree [41] 8.48 -16.43 -7.92 -3.27 -0.72 -6.91 -1.53 -0.09 -8.08 -15.13 -5.79 -4.31 -6.87 -9.83 -4.07 -5.56
GradArgmax[15] -798 -43.33 -7.37 -2.13 -1.88 -7.63 -2.96 -1.08 -1090 -12.31 -10.85 -7.45 -1717 -16.24 -13.08 -11.99
PR-BCD [42] -17.54 -55.76 -19.68 -6.99 -4.85 -33.25 -3.42 -3.78 -47.84 -19.85 -46.50 -23.36 -55.22 -52.55 -30.80 -32.11
CAMA -11.08 -47.07 -11.64 -9.18 -3.23 -9.44 -2.88 -1.80 -20.68 -2243 -15.74 -9.88 -2248 -1889 -13.93 -12.64
CAMA-Grad -11.64 -5020 -12.72 -5.85 -2.78 -9.16 -3.24 -1.53 -2351 2229 -16.69 -8.76 -2486 -1885 -13.28 -15.82
CAMA-subgraph -25.44 -74.44 -18.62 -7.49 -6.91 -33.43 -6.02 -3.69 -61.44 -54.40 -49.68 -23.77 -57.85 -58.43 -34.88 -33.82
CAMA-subgraph-Grad -23.86 -75.55 -19.68 -10.24 -5.84 -32.81 -5.93 -3.87 -61.24 -55.67 -48.98 -21.92 -5441 -5843 -32.29 -35.32

TABLE 4: Summary of the change in classification accuracy (in %) compared to the clean graph under white-box attack for
social networks. Lower is better. Best performances are shown in bold markers.

Dataset IMDB-BINARY IMDB-MULTI DBLP_v1
Models GCN GIN g-UNets GCN GIN g-U-Nets GCN GIN g-U-Nets
Clean 73.67 7422 73.89 50.00 50.59 48.30 90.47 9152 93.55
Random [15] -0.78 -7.55 -0.78 -0.96 -9.48 -0.45 -0.37 -3.21 -0.32
Degree [41] -1.67 -18.00 -2.78 -1.63 -14.37 -2.37 -0.37 -4.02 -0.31
GradArgmax [15] -4.34 -19.22 -3.33 -2.82 -14.52 -1.11 -0.32 -4.29 -0.51
PGD [15] -2.57 -22.82 -1.79 -2.00 -29.12 -0.57 -1.33 -11.24 -1.10
PR-BCD [42] -5.87 -17.42 -7.99 -4.80 -20.79 -2.50 -0.90 -8.40 -0.78
ReWatt [32] -6.07 -322 -6.99 -6.53 -2.79 -3.03 -1.50 -2.18 -2.08
CAMA 211 -15.22 -2.33 -3.11 -11.48 -1.19 -0.72 -4.42 -0.50
CAMA-Grad -2.78 -15.55 -1.56 -326 -13.33 -1.04 -0.80 -4.98 -0.60
CAMA-subgraph -7.77 2152 -8.59 -7.73 -30.39 -4.10 -144 -11.54 -1.18
CAMA-subgraph-Grad ~ -7.37 -22.82 -8.79 -8.07 -30.19 -3.97 -1.52 -10.89 -1.13

TABLE 5: Summary of the change in classification accuracy (in %)

Lower is better.

compared to the clean graph under black-box attack.

Dataset MUTAG PROTEINS NCI1 COX2

Models GIN-0 IGNN g-U-Nets GIN-0 IGNN g-U-Nets GIN-0 IGNN g-U-Nets GIN-0 IGNN g-U-Nets
Clean 89.85 81.46 88.89 77.81 77.99 77.54 77.59 75.06 72.24 83.51 83.51 83.08

Feature Attack
Random [15] -2.13 -4.24 -4.85 -0.54 -3.59 -0.45 -6.59 -9.32 -13.14 -2.56 -7.26 -9.19
Degree [41] -2.66 -4.24 -6.52 -0.63 -4.13 -0.54 -9.46 -10.19 -14.89 -3.85 -7.69 -10.69
PageRank [31] -2.66 -3.71 -4.85 -0.45 -3.96 -0.45 -9.10 -12.82 -15.26 -5.57 -8.33 -10.06
Betweenness [31] -3.71 -3.71 -6.52 -0.45 -3.87 -0.36 -7.57 -12.14 -13.97 -3.64 -6.83 -11.55
GC-RWCS [31] -2.66 -3.71 -6.52 -0.54 -3.60 -0.45 -7.47 -11.51 -13.82 -3.88 -6.84 -9.83
RWCS [31] -2.66 -3.71 -5.97 -0.45 -3.96 -0.45 -9.29 -11.36 -14.16 -5.99 -6.84 -10.27
CAMA -4.24 -6.93 -5.38 -0.90 -5.57 -1.26 -17.13 -23.72 -24.28 -12.88 -22.04 -22.26
CAMA-Grad -3.71 -8.01 -4.27 -0.99 -5.84 -1.17 -15.23 -22.65 -24.06 -12.44 -19.03 -20.35
Structure Attack

Random [15] -16.43 -5.26 -2.13 -4.13 -1.53 -0.54 -10.97 -6.37 -4.31 -3.84 -2.14 -4.93
Degree [41] -16.43 -7.92 -3.27 -6.91 -1.53 -0.09 -15.13 -5.79 -4.31 -9.83 -4.07 -5.56
GradArgmax [15] -12.75 -9.53 -2.72 -5.48 -1.17 -0.90 -8.88 -6.67 -3.75 -9.82 -4.48 -5.12
ReWatt [32] -6.84 -3.68 -9.12 -2.61 -0.81 -1.17 -7.57 -4.94 -8.23 -7.70 -2.57 -13.07
Grabnel [33] -42.39 -11.11 -2.66 -8.53 -2.25 -0.90 -26.32 -15.55 -5.52 -11.13 -6.41 -12.24
CAMA -47.07 -11.64 -9.18 -9.44 -2.88 -1.35 -22.43 -15.74 -9.88 -18.89 -13.93 -12.64
CAMA-Grad -50.20 -12.72 -5.85 -9.16 -3.24 -1.08 2229 -16.69 -8.76 -18.85 -13.28 -15.82
CAMA-subgraph -59.53 -11.69 -3.77 -24.89 -2.25 -0.99 -25.84 -15.81 -7.52 -53.73 -12.20 -11.57
CAMA-subgraph-Grad -60.03 -10.64 -5.44 -23.63 -2.61 -1.17 -26.69 -17.42 -9.32 -53.51 -13.68 -8.56

o (structure) PGD [14]: PGD performs project gradient
descent topology attacks and is an effective white-box
attack algorithm.

e (structure) PR-BCD [42]: PR-BCD conducts sparsity-

aware first-order optimization attacks based on random-
ized block coordinate descent and is able to attack larger

graphs.

o (structure) ReWatt [32]: ReWatt conducts rewiring opera-

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

tions to perform structure attacks and uses reinforcement
learning to find the optimal rewiring operations. We
select ReWatt as the representative of the state-of-the-art
black-box optimization baseline.

o (structure) GRABNEL [33]: GRABNEL is a powerful
black-box attack method on graph classification tasks
based on the bayesian optimization.

o (feature) PageRank [31]: PageRank is a graph centrality
metric. Here, we attack nodes with the top-ranked
Pagerank scores.

o (feature) Betweenness [31]: Betweenness is a graph central-
ity metric. Here, we attack nodes with the top-ranked
Betweenness scores.

o (feature) RWCS [31]: RWCS is a practical feature attack
algorithm based on an importance score similar to
PageRank by using the connection between the GNNs’
backward propagation and random walks.

o (feature) GC-RWCS [31]: GC-RWCS is a variant of RWCS,
which uses the greedy correction procedure on top of
the RWCS strategy.

o (feature, structure) GraphAttacker [36]: GraphAttacker
performs attacks based on the generative adversarial
network and three key components: the multi-strategy
attack generator, the similarity discriminator, and the
attack discriminator.

e (structure) Projective Ranking [34]: Projective Ranking
exploits mutual information to consider the long-term
benefits of perturbations and generates adversarial
samples.

o (feature, structure) Attack on the HGP Model [35]: Attack
on the HGP Model aims to fool the pooling operator in
hierarchical GNN-based graph classification models.

Perturbation restrictions and hyper-parameters. For feature
attack, we set feature adjusted magnitude A = 0.1. We select
10% of nodes in one graph to perturb, and 10% of features
are modified for each dataset. For structure attack, we set
the perturbation budget A = [10%]|E;|] for each graph
G;, where |E;| denotes the number of edges in graph G..
For ReWatt, the number of rewiring operations is set to
[0.5A] with at least one rewiring, which is kept the same
setting as [32]. Besides, in the similarity restriction, we use
the first hidden layer to calculate nodes similarity h*" =
h(, fix s, = 0.95 and tune s; € {0.95,0.9, 1}. For CAMA-
subgraph, we set total training epochs as 30, the subgraph
graph proportion p% = 50%, Aent = 1.

We conduct the untargeted attack and evaluate them on
test graphs. Specifically, we perform 10-fold cross-validation
in each classification process and report the average valida-
tion accuracy within the cross-validation. This configuration
follows [22] on graph classification, resulting from the
unstable training of small-sized datasets such as MUTAG.

5.2 Adversarial Attack on Graph Classification

We first compare CAMA and CAMA-subgraph to multiple
baselines under the white-box attack. We train on clean
graphs for each graph classifier, generate perturbed graphs
on validation sets, and calculate prediction accuracy using
the trained graph classifiers. Full results under the white-box
setting for chemical datasets are provided in Table 3, for
social networks are demonstrated in Table 4.

9

In feature attack, our proposed methods perform better
by a high margin on all datasets and all graph classification
models, which implies our methods can select the most
influential nodes for graph classification tasks. In structure
attack, CAMA and CAMA-subgraph outperform the other
baselines in all situations. Meanwhile, the subgraph mask
training algorithm (CAMA-subgraph) outperforms the simple
heuristic flip edge method (CAMA) by a large margin.
Actually, the choice of CAMA and CAMA-subgraph is to
balance the attack efficiency and effectiveness. These results
demonstrate the high attack effectiveness of CAMA. More
interestingly, the grad version CAMA-Grad achieves excellent
performance close to CAMA but does not guarantee better
performance.

We also observe that the attack results vary from different
datasets and graph classifiers. The accuracy decreases the
least on the PROTEINS dataset when suffering attacks.
Interestingly, graph classifiers tend to behave differently
when they are attacked by structure and feature perturba-
tions. For example, IGNN is more robust facing structural
perturbations while more vulnerable under feature attack.

5.3 Transferability of Attack

In real-world applications, model parameters usually are not
available. Thus, to evaluate CAMA under a more realistic
and general situation and further explore the transferabil-
ity of various attacking methods, we validate our attack
strategies under the black-box attack setting for four datasets.
Specifically, we use GCN as the surrogate model, generate
adversarial examples by targeting GCN, and then evaluate
the other GNNs on the perturbed graphs. The detailed results
are provided in Table 5.

First, we could see our approaches surpass the other
baselines in most situations. The perturbations generated
by CAMA and CAMA-subgraph consistently demonstrate
strong transferability on four graph classification datasets
under the black-box attack setting. For CAMA-subgraph, we
could also see a significant performance improvement of
CAMA-subgraph over CAMA. The calculation of the ranked
CAM matrix and the selected subgraph is important. As
a result, the attack performance of a black-box attack may
exceed a white-box attack due to an efficient ranked CAM
matrix of the GCN surrogate model. Moreover, we could
see that the attack performance of ReWatt is unstable. It
does work with some datasets, like NCI1, while it fails for
the other datasets. Second, compared with the white-box
attack, our approaches have a more significant advantage
over baselines like GradArgmax. This indicates that our
methods have a more vital attack ability when transferring
to other GNNSs. Besides, the results show that perturbations
against a surrogate model with typical architecture could also
generalize to the hierarchical graph classifier like g-U-Nets.

5.4 Localization Effectiveness

Here, we show the effectiveness of CAMA in the global-to-
local attack challenge raised in Sec. 4.1. For the feature attack,
we show the average node degree selected by CAMA and
other baselines in Table 6. In comparison to baselines such as
RWCS, the average degree of nodes selected by CAMA and
CAMA_Grad are lower and closer to that of Random, which

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

TABLE 6: Comparison of average degrees for selected nodes
under various feature attack methods.

Dataset Random RWCS GC_RWCS CAMA CAMA-Grad
MUTAG 2.23 2.99 2.72 212 2.28
COX2 2.00 3.18 2.49 2.26 2.35
PROTEINS 3.74 4.73 4.13 411 3.96
NCI1 2.14 2.96 2.64 1.92 191

indicates our proposed methods are more unnoticeable.
What’s more, we visualize the perturbation nodes and edges
selected by CAMA in Figure 4 as a comparison with Figure 3.
The edges chosen by CAMA are not trapped in one node
compared to Degree, GradArgmax, and ReWatt.

A RN

CAMA CAMA-Grad CAMA-Subgraph CAMA-Subgraph-Grad

Fig. 4: An example of CAMA on MUTAG dataset with edge
attack proportion=20%. Green nodes are selected by CAMA,
indicating their strong influences on graph classification.
Added edges are shown in red lines and deleted edges are
shown in orange dashed lines.

Accuracy (%)
N ~N -]
N o e

o
&

0 25 50 75 100

Subgraph Proportion (%)
Fig. 5: Line-plot for attack performance under CAMA-
subgraph for different subgraph proportion. We record 10-
fold testing results on the MUTAG dataset using GCN as the
graph classifier. Lower is better.

Insights of target nodes chosen by CAMA. We compare
the top 5 nodes selected by CAMA and Degree and report
statistics in Table 7. The relatively small average degree
and closeness centrality value differentiate CAMA from
centrality-based methods. Through the total variation and
number of edges, we find that nodes chosen by CAMA have
higher connectivity and smoothness (smaller total variation).
Besides, we provide an example of edge perturbations on
baselines in Figure 3.

TABLE 7: Statistics for selected nodes by CAMA and Degree.

Method Avg. Degree Avg. Closeness Total Variation No. Edges
Degree 2.8 0.25 12 1
CAMA 24 0.22 8 2

5.5 Sensitivity Analysis
Sensitivity analysis for subgraph proportion p in CAMA-
subgraph. The choice of subgraph proportion in CAMA-

10

subgraph is crucial. A larger proportion means more per-
turbation candidates but also more noise, while a smaller
proportion may face perturbation candidates deficiency. An
efficient subgraph selection could help the attacker localize
the essential subgraph nodes and edges. Figure 5 shows
the attack performance of CAMA-subgraph with various
subgraph proportions on MUTAG. We could see a clear
drop tendency when the subgraph proportion gets smaller
from 100%, which indicates the effectiveness of locating the
subgraph with the ranked CAM vector. For MUTAG, the best
proportion is 60%, and the accuracy drop is 14.36% under
this structure attack perturbation setting.

Sensitivity Analysis for Hyper-parameter s; and sz in
CAMA. We perform a sensitivity analysis over s; and s3 in
Table 8 and set GIN as the victim model on the MUTAG
dataset. s; controls the edge insertion and sy controls the
edge deletion. s; = 1,59 = 0 represents no restriction
on edge insertion/deletion. We could find that controlling
the edge insertion is more helpful for successful attacks in
contrast to edge deletion.

TABLE 8: Sensitivity analysis for hyper-parameter s; and ss.
Lower is better.

Hyper-parameter clean 0 0.2 04 0.6 0.8 1
s1 (fix 52=0) 83.04 6772 6772 66.64 6716 66.64 7140
s2 (fix s1=1) 83.04 7140 7140 7193 71.93 7193 7246

Perturbations budget for white-box attack. We analyze the
changes in accuracy with respect to the perturbation budget
A and the adjusted magnitude A in Figure 6. Not surprisingly,
the prediction accuracy decreases with a higher number of
perturbations or larger values of adjusted magnitude. In all
settings of hyper-parameters, we can observe that CAMA and
CAMA-Grad show remarkable advantages over all the other
baselines. Meanwhile, from the figure on the right, we can
observe the accuracy drops dramatically when the adjusted
magnitude) gets larger for CAMA and CAMA-Grad.

5.6 Poisoning Black-box Attack

We also evaluate our methods under poisoning black-box
attacks. We select GIN as the victim model and retrain it
on perturbed graphs generated from the surrogate GCN.
Additionally, we compare CAMA with a more powerful
attacker, project gradient descent topology attack (PGD) [14].
PGD was originally designed for node classification tasks.
We extend its application domain to graph classification.
We use cross entropy loss and fix epoch numbers to 10 in
our experiment under PGD topology attack. Figure 7 shows
the final attack results. Coordinating with the results of the
evasion attack above, the strong transferability of CAMA
and CAMA-Grad still concludes. However, the method using
purely gradient information like GradArgmax and PGD may
damage the attacking performance when transferring to other
models.

5.7 Computational Efficiency Analysis

To cooperate with our complexity analysis, we demonstrate
the computational efficiency of CAMA and CAMA-subgraph
by reporting the average running time over 10 times in

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

11

85
85 Random
Degree
GradArgmax
-+ ReWatt
80 © CAMA 80

\'

4 CAMA-Grad

~N

ul
~N
a

Accuracy (%)
Accuracy (%)

~N

(=]
~N
o

Random
Degree

65 GradArgmax-fea

- ReWatt-fea

* CAMA

4 CAMA-Grad

65

60 60

o
=]

Random
Degree
GradArgmax-fea
m ReWatt-fea
= CAMA
m CAMA-Grad

Accuracy (%)
»
(-]

80
) | ‘l |I
o

o

0.05 0.1 0.5 1

0 5 10 15 20 25 o 5 10
Attack Proportion on Edges(%)

Attack Proportion on Nodes (%)

20 25
Feature Adjusted Magnitude

Fig. 6: Attack results with different perturbation hyper-parameters. All experiments are conducted on the MUTAG dataset
using GCN. Lower accuracy is better. Left: Attack results with increasing perturbation proportion of edges. Middle: attack
results with increasing perturbation proportion of nodes. Right: Attack results with increasing adjusted magnitude values.

80 Mean accuray for clean graphs

~
o

)
°©

Accuracy (%)

50 ‘ ‘

CAMA

Random Degree GradArgmax PGD CAMA-Grad

Attack Method

Fig. 7: Box-plot for poisoning structural perturbations under
black-box attack. We use GIN as the victim model and record
10-fold testing results on the NCI1 dataset. Lower is better.

comparison with all baselines. For structure attack, Random
runs in 0.37 seconds, GradArgmax runs in 0.24 seconds,
ReWatt finishes for 30.01 seconds, while CAMA runs in 0.79
seconds and CAMA-Subgraph runs in 34.23 seconds. Under
the feature attack setting, Random finishes in 0.63 seconds,
Degree runs in 0.61 seconds, and CAMA finishes in 0.67
seconds.

We can find that CAMA can finish within 1 second, which
is consistent with our complexity analysis and implies that
the scalability of our proposed approaches could not be
an issue. The time cost of CAMA-subgraph is comparable
with ReWatt. Both methods need end-to-end training, but
CAMA-subgraph has better attack performance.

6 CONCLUSION

We revisit adversarial attacks on GNNs for graph classifica-
tion in this paper. We establish a general attack framework
focusing on graph classification which considers compre-
hensive attack settings under white-box and black-box
attacks and performs both structure and feature attacks.
We first estimate the importance of nodes towards the
graph classification by Class Activation Mapping and its
variant. Then, we heuristically design algorithms to generate
adversarial examples for both feature and structure attacks
with the ranking information of nodes. Experiments show
that the proposed attack strategies significantly outperform

existing approaches on various graph classifiers under
multiple settings. Our general framework can also serve
as a simple yet novel baseline for future works in evaluating
the robustness of graph classification tasks.

REFERENCES

[1] T. N. Kipf and M. Welling, “Semi-supervised classification with
graph convolutional networks,” international conference on learning
representations, 2017.

[2] M. Zhang and Y. Chen, “Link prediction based on graph neural
networks,” in Proceedings of the 32nd International Conference on
Neural Information Processing Systems, 2018, pp. 5171-5181.

[3] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,
“Neural message passing for quantum chemistry,” international
conference on machine learning, pp. 1263-1272, 2017.

[4] Z. Zhang, P. Cui, and W. Zhu, “Deep learning on graphs: A
survey,” IEEE Transactions on Knowledge and Data Engineering,
2020.

[5] E Monti, F. Frasca, D. Eynard, D. Mannion, and M. M. Bronstein,
“Fake news detection on social media using geometric deep
learning,” arXiv preprint arXiv:1902.06673, 2019.

[6] L.G. Gémez, B. Chiem, and]J.-C. Delvenne, “Dynamics based
features for graph classification,” arXiv preprint arXiv:1705.10817,
2017.

[71 R.Kim, C. H. So, M. Jeong, S. Lee, J. Kim, and J. Kang, “Hats:
A hierarchical graph attention network for stock movement
prediction,” arXiv preprint arXiv:1908.07999, 2019.

[8] T.Magelinski, D. Beskow, and K. M. Carley, “Graph-hist: Graph
classification from latent feature histograms with application to
bot detection,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 34, 2020, pp. 5134-5141.

[9] Z.L1i, J. Tang, and T. Mei, “Deep collaborative embedding for

social image understanding,” IEEE transactions on pattern analysis

and machine intelligence, vol. 41, no. 9, pp. 2070-2083, 2018.

Z.1i,]. Tang, L. Zhang, and J. Yang, “Weakly-supervised semantic

guided hashing for social image retrieval,” International Journal of

Computer Vision, vol. 128, pp. 2265-2278, 2020.

Z.Li, Y. Sun, L. Zhang, and J. Tang, “Ctnet: Context-based tandem

network for semantic segmentation,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 44, no. 12, pp. 9904-9917,

2021.

W. Jin, Y. Ma, X. Liu, X. Tang, S. Wang, and J. Tang, “Graph struc-

ture learning for robust graph neural networks,” in Proceedings

of the 26th ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining, 2020, pp. 66-74.

S. Bhattacharyya, S. Jha, K. Tharakunnel, and J. C. Westland,

“Data mining for credit card fraud: A comparative study,” Decision

Support Systems, vol. 50, no. 3, pp. 602613, 2011, On quantitative

methods for detection of financial fraud, 1ISSN: 0167-9236.

K. Xu, H. Chen, S. Liu, et al., “Topology attack and defense

for graph neural networks: An optimization perspective,” in

International Joint Conference on Artificial Intelligence (IJCAI), 2019.

[10]

(1]

(12]

[13]

[14]

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]

[36]

[37]

H. Dai, H. Li, T. Tian, et al., “Adversarial attack on graph
structured data,” in International conference on machine learning,
PMLR, 2018, pp. 1115-1124.

H. Chang, Y. Rong, T. Xu, et al., “ A restricted black-box adversarial
framework towards attacking graph embedding models,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34,
2020, pp. 3389-3396.

H. Wu, C. Wang, Y. Tyshetskiy, A. Docherty, K. Lu, and L. Zhu,
“Adversarial examples for graph data: Deep insights into attack
and defense,” in Proceedings of the 28th International Joint Conference
on Artificial Intelligence, AAAI Press, 2019, pp. 4816-4823.

A. Bojchevski and S. Giinnemann, “Adversarial attacks on node
embeddings via graph poisoning,” in Proceedings of the 36th Inter-
national Conference on Machine Learning, ICML, ser. Proceedings of
Machine Learning Research, PMLR, 2019.

P. E. Pope, S. Kolouri, M. Rostami, C. E. Martin, and H. Hoffmann,
“Explainability methods for graph convolutional neural networks,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2019, pp. 10772-10781.

H. Chang, Y. Rong, T. Xu, et al., “Spectral graph attention network
with fast eigen-approximation,” arXiv preprint arXiv:2003.07450,
2020.

C. Guan, Z. Zhang, H. Li, et al., “Autogl: A library for automated
graph learning,” arXiv preprint arXiv:2104.04987, 2021.

K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are
graph neural networks,” in ICLR 2019 : 7th International Conference
on Learning Representations, 2019.

F. Gu, H. Chang, W. Zhu, S. Sojoudi, and L. El Ghaoui, “Im-
plicit graph neural networks,” in Advances in Neural Information
Processing Systems, vol. 33, 2020, pp. 11 984-11995.

J. Zhou, G. Cui, S. Hu, et al., “Graph neural networks: A review
of methods and applications,” AI Open, vol. 1, pp. 57-81, 2020.
Z.Ying, J. You, C. Morris, X. Ren, W. Hamilton, and J. Leskovec,
“Hierarchical graph representation learning with differentiable
pooling,” neural information processing systems, pp. 4801-4811, 2018.
Y. Ma, S. Wang, C. C. Aggarwal, and J. Tang, “Graph convolutional
networks with eigenpooling,” in Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining, 2019, pp. 723-731.

H. Gao and S. Ji, “Graph u-nets,” in International Conference on
Machine Learning, 2019, pp. 2083-2092.

W. Jin, Y. Li, H. Xu, Y. Wang, and]. Tang, “Adversarial attacks
and defenses on graphs: A review and empirical study,” arXiv
preprint arXiv:2003.00653, 2020.

D. Zugner, A. Akbarnejad, and S. Glinnemann, “Adversarial
attacks on neural networks for graph data,” in Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, 2018, pp. 2847-2856.

D. Ziigner and S. Giinnemann, “Adversarial attacks on graph
neural networks via meta learning,” in International Conference on
Learning Representations (ICLR), 2019.

J. Ma, S. Ding, and Q. Mei, “Towards more practical adversarial
attacks on graph neural networks,” Advances in Neural Information
Processing Systems, vol. 33, 2020.

Y. Ma, S. Wang, T. Derr, L. Wu, and J. Tang, “Graph adversarial
attack via rewiring,” in Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining, ser. KDD 21,
2021, 1161-1169.

X. Wan, H. Kenlay, B. Ru, A. Blaas, M. Osborne, and X. Dong,
“Adversarial attacks on graph classifiers via bayesian optimisa-
tion,” in Thirty-Fifth Conference on Neural Information Processing
Systems, 2021.

H. Zhang, B. Wu, X. Yang, ef al., “Projective ranking: A transferable
evasion attack method on graph neural networks,” in Proceedings
of the 30th ACM International Conference on Information & Knowledge
Management. 2021.

H. Tang, G. Ma, Y. Chen, et al., “Adversarial attack on hierarchical
graph pooling neural networks,” arXiv preprint arXiv:2005.11560,
2020.

J. Chen, D. Zhang, Z. Ming, and K. Huang, Graphattacker: A general
multi-task graphattack framework, 2021. arXiv: 2101.06855 [cs.LG].
B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba,
“Learning deep features for discriminative localization,” in Proceed-
ings of the IEEE conference on computer vision and pattern recognition,
2016, pp. 2921-2929.

[38]

[39]

[40]

[41]

[42]

12

H. Yuan, H. Yu, S. Gui, and S. Ji, “Explainability in graph neural
networks: A taxonomic survey,” arXiv preprint arXiv:2012.15445,
2020.

R. Ying, D. Bourgeois, J. You, M. Zitnik, and]J. Leskovec, Gn-
nexplainer: Generating explanations for graph neural networks, 2019.
arXiv: 1903.03894 [cs.LG].

C. Morris, N. M. Kriege, F. Bause, K. Kersting, P. Mutzel, and
M. Neumann, “Tudataset: A collection of benchmark datasets
for learning with graphs,” in ICML 2020 Workshop on Graph
Representation Learning and Beyond (GRL+ 2020), 2020. arXiv: 2007.
08663. [Online]. Available: www.graphlearning.io.

H. Tong, B. A. Prakash, T. Eliassi-Rad, M. Faloutsos, and C. Falout-
sos, “Gelling, and melting, large graphs by edge manipulation,”
in Proceedings of the 21st ACM international conference on Information
and knowledge management, 2012, pp. 245-254.

S. Geisler, T. Schmidt, H. Sirin, D. Ziigner, A. Bojchevski, and
S. Glinnemann, “Robustness of graph neural networks at scale,” in
Advances in Neural Information Processing Systems, vol. 34, Curran
Associates, Inc., 2021, pp. 7637-7649.

Xin Wang is currently an Assistant Professor
at the Department of Computer Science and
Technology, Tsinghua University. He got both
his Ph.D. and B.E degrees in Computer Science
and Technology from Zhejiang University, China.
He also holds a Ph.D. degree in Computing
Science from Simon Fraser University, Canada.
His research interests include relational media
big data analysis, multimedia intelligence and
. recommendation in social media. He has pub-

lished over 100 high-quality research papers in

top journals and conferences including IEEE TPAMI, IEEE TKDE, ACM
TOIS, ICML, NeurlPS, ACM KDD, ACM Web Conference, ACM SIGIR
and ACM Multimedia etc. He is the recipient of 2017 China Postdoctoral
innovative talents supporting program. He received the ACM China Rising
Star Award in 2020 and IEEE TCMC Rising Star Award in 2022.

Heng Chang is currently pursuing a Ph.D. De-
gree in the Tsinghua-Berkeley Shenzhen Insti-
tute at Tsinghua University. He received his
B.S. from the Department of Electronic Engi-
neering, Tsinghua University in 2017. His re-
search interests focus on representation learn-
ing, adversarial robustness, and machine learn-
ing on graph/relational structured data. He has
published several papers in prestigious confer-
ences/journals including NeurlPS, AAAI, TheWe-
bConf, TKDE, TPAMI, etc.

Beini Xie is currently an M.A. student in the
Tsinghua-Berkeley Shenzhen Institute at Ts-
inghua University. She received her B.S from
the Statistical Department, Renmin University
in 2020. Her research interests include adver-
sarial robustness, machine learning and neural
architecture search on graph/relational structured
data.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

JSAC, etc.

Tian Bian is currently a Ph.D. student at The
Chinese University of Hong Kong. He received
his B.E. degree from Southwest University in
2018 and his Master’s degree from Tsinghua
University in 2021. His research interests focus
on graph neural networks and their applications
such as social media analysis. He has served as
a reviewer for ICML, NeurlPS, AAAI, etc.

Shiji Zhou is currently a Ph.D. candidate at
Tsinghua University. He received his B.S. from
the Chinese Academy of Science-Beihang Hua
Luogeng Mathematics Honors Class, Beihang
University in 2017. His research covers online
learning and multi-objective optimization, as re-
flected in his publications on top-tier conferences
and journals, including NeurlPS, AISTATS, TMM.
He has been the co-organizer of the 3rd Human
in the Loop Learning (HILL) workshop on ICML.
He has served as a reviewer for ICML, NeurlPS,

Daixin Wang received his Ph.D. degree in com-
puter science and technology from Tsinghua Uni-
versity, Beijing, China, in 2018, and he is currently
working as an algorithm expert on Ant Group. He
has authored or coauthored more than 10 papers
in conferences such as KDD, AAAI, and IJCAI,
and journals such as the IEEE Transactions on
Multimedia. His research interests include graph
learning and multimodal learning.

Zhigiang Zhang is currently a Staff Engineer at
Ant Group. His research interests mainly focus
on graph machine learning. He has led a team
to build an industrial graph machine learning
system, AGL, in Ant Group. He has published
more than 30 papers in top-tier machine learning
and data mining conferences, including NeurlPS,
VLDB, SIGKDD, and AAAL.

13

Wenwu Zhu is currently a Professor in the De-

» partment of Computer Science and Technology
- at Tsinghua University, the Vice Dean of National
Research Center for Information Science and

¥y Technology. Prior to his current post, he was
a Senior Researcher and Research Manager

| at Microsoft Research Asia. He was the Chief
Scientist and Director at Intel Research China
from 2004 to 2008. He worked at Bell Labs New
L l‘ Jersey as a Member of Technical Staff during

) 1996-1999. He received his Ph.D. degree from
New York University in 1996.

His current research interests are in the area of data-driven multimedia
networking and multimedia intelligence. He has published over 350
referred papers and is inventor or co-inventor of over 50 patents. He
received ten Best Paper Awards, including ACM Multimedia 2012 and
IEEE Transactions on Circuits and Systems for Video Technology in 2001
and 2019.

He served as EiC for IEEE Transactions on Multimedia (2017-2019),
the chair of the steering committee for IEEE Transactions on Multimedia
(2019-2021), and the Associate EiC for IEEE Transactions for Circuits
and Systems for Video Technology. He serves as General Co-Chair for
ACM Multimedia 2018 and ACM CIKM 2019, respectively. He is an ACM
Fellow, AAAS Fellow, IEEE Fellow, SPIE Fellow, and a member of The
Academy of Europe (Academia Europaea).

